Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fluorescent protein biomaterials have important applications such as bioimaging in pharmacological studies. Self-assembly of proteins, especially into fibrils, is known to produce fluorescence in the blue band. Capable of self-assembly into nanofibers, we have shown we can modulate its aggregation into mesofibers by encapsulation of a small hydrophobic molecule. Conversely, azobenzenes are hydrophobic small molecules that are virtually non-fluorescent in solution due to their highly efficient photoisomerization. However, they demonstrate fluorogenic properties upon confinement in nanoscale assemblies by reducing the non-radiative photoisomerization. Here, we report the fluorescence of a hybrid protein-small molecule system in which azobenzene is confined in our protein assembly leading to fiber thickening and increased fluorescence. We show our engineered protein Q encapsulates AzoCholine, bearing a photoswitchable azobenzene moiety, in the hydrophobic pore to produce fluorescent mesofibers. This study further investigates the photocontrol of protein conformation as well as fluorescence of an azobenze-containing biomaterial.more » « less
-
The majority of bioactive molecules act on membrane proteins or intracellular targets and therefore needs to partition into or cross biological membranes. Natural products often exhibit lipid modifications to facilitate critical molecule–membrane interactions, and in many cases their bioactivity is markedly reduced upon removal of a lipid group. However, despite its importance in nature, lipid-conjugation of small molecules is not commonly used in chemical biology and medicinal chemistry, and the effect of such conjugation has not been systematically studied. To understand the composition of lipids found in natural products, we carried out a chemoinformatic characterization of the “natural product lipidome”. According to this analysis, lipidated natural products predominantly contain saturated medium-chain lipids (MCLs), which are significantly shorter than the long-chain lipids (LCLs) found in membranes and lipidated proteins. To study the usefulness of such modifications in probe design, we systematically explored the effect of lipid conjugation on five different small molecule chemotypes and find that permeability, cellular retention, subcellular localization, and bioactivity can be significantly modulated depending on the type of lipid tail used. We demonstrate that MCL conjugation can render molecules cell-permeable and modulate their bioactivity. With all explored chemotypes, MCL-conjugates consistently exhibited superior uptake or bioactivity compared to LCL-conjugates and either comparable or superior uptake or bioactivity to short-chain lipid (SCL)-conjugates. Together, our findings suggest that conjugation of small molecules with MCLs could be a powerful strategy for the design of probes and drugs.more » « less
-
Abstract The combination of electrocyclizations and cycloadditions accounts for the formation of a range of fascinating natural products. Cascades consisting of 8π electrocyclizations followed by a 6π electrocyclization and a cycloaddition are relatively common. We now report the synthesis of the tetramic acid PF‐1018 through an 8π electrocyclization, the product of which is immediately intercepted by a Diels–Alder cycloaddition. The success of this pericyclic cascade was critically dependent on the substitution pattern of the starting polyene and could be rationalized through DFT calculations. The completion of the synthesis required the instalment of a trisubstituted double bond by radical deoxygenation. An unexpected side product formed through 4‐exo‐trig radical cyclization could be recycled through an unprecedented triflation/fragmentation.more » « less
An official website of the United States government
